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The initial/Neumann boundary-value enthalpy formulation for the two-phase
Stefan problem is regularized by smoothing. Known estimates predict & con-
vergence rate of ¢!, and this result is extended in this paper to include the case of
a (nonzero) residual in the regularized problem. A modificd Newton- Kantorovich
framework is established, whereby the exact solution of the regularized problem is
replaced by one Newton iteration. It is shown that a consistent theory requires
measurc-theoretic hypotheses on the starting guess and the Newton iterate.
otherwise residual decrease is not expected. The circle closes in one spatial dimen-
sion, where it is shown that the residual decrcase of Newton’s method correlates
precisely with the ¢ convergence theory. ¢ 1990 Acudemic Press. Inc

I. INTRODUCTION

The two-phase Stefan problem is an evolution model of heat conduction
with change of phase. Tt is one of several types of degenerate parabolic
models studied intensively during the last two decades (cf. [2] for elabora-
tion and references), and is characterized as a so-called moving boundary
problem. The moving boundary in this model is physically described as the
front, dividing the two phases of a substance undergoing change of phase,
but is most precisely described mathematically, in the case of purely bulk
phenomena at a single phase change temperature, t,, as the set of points
(moving) in physical space 2, with associated temperature, 0. In this case,
the enthalpy, which is composed of internal and latent energy components,
i1s a given physical function @ of temperature discontinuous at the phase
change temperature, where it is set-valued. Notice that this model also
includes a change of phase which is not entirely defined by a bulk
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phenomenon at 8,, but may occur over a bracket of temperatures. In this
case, the front is, in fact, a mushy region, and a point of the substance can
be associated mathematically with a given phase only by tracing the
history, from an initial state, of the latent energy. In principle, this history
is equivalent to tracking the moving boundary.

There is a nonlocal change of variables, 6+ — K 'u, where K is the
Kirchhoff transformation, such that the evolution up to time 7 is governed,
in the absence of sources or sinks, by the parabolic equation

cH{u)

ot

—du=0, (N

over the space-time domain D=Qx{0, T), together with appropriate
initial and boundary conditions. Here, H=Q+ K ', and u measures the
flux energy required to raise the temperature from 6, to 0. Equation (1)
must necessarily be understood in a distributional sense, since H is
discontinuous at K#,. The latter degeneracy suggests smoothing H, say, by
constructing appropriate H, converging to H away from its discontinuity,
and analyzing the smoothed problems,

CHAuw) g

,.\
3]
—

-~

[

It was shown in [4,2] that H {u )~ H{x) and u, — u, with order \/8 in
appropriate norms. These results are described concisely in the next
section, and we provide a proof, exhibiting the constants explicitly, and
allowing (2) to be solved approximately, with the right hand side equal to
a residual R,. This result is contained in Theorem 1.

Although the regularized problems are smooth, they are nonetheless
nonlinear, and a natural question is whether linearization leads to a
convergent procedure. This is a particularly important gquestion computa-
tionally, since the associated linearized problems have positive-definite, self-
adjoint formulations, and are amenable to standard algorithmic procedures
in numerical computation, including iterative procedures like the conjugate
gradient method. Thus, this paper is devoted to the study of the lineariza-
tion of (2), specifically to a modified Newton-Kantorovich framework,
described in Section 3. The standard functional calculus framework is
inadequate (cf. [3] for a presentation), not because of a breakdown in
uniform inverse bounding, but because the Lipschitz constant of the
Fréchet derivative is of order ¢~ without further hypotheses; its square is
a factor in residual estimation. This fact necessitates a delicate study of the
residual directly, as contained in Theorem 2, in relation to the sets where
the starting “guess” and the Newton iterate have small measure, and
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subsequent hypotheses upon these sets. This intricacy imposes a somewhat
different norm structure upon the residual, to guarantee the residual
decrease; closure with the (/& theory occurs only in one spatial dimension.
as a consequence (cf. Corollary 4). The latter depends upon the inverse
bounding result of Lemma 3.

The upshot of these investigations is that Newton type methods for
two-phase Stefan problems, as applied to their regularized versions, require
extreme care in their application. This fact accentuates the importance of
globally convergent methods, such as those presented in [4, 5, 1], despite
their relatively reduced rate of convergence when interfacing with explicit
computational procedures. Finally, the reader might have expected some
commentary on global Newton methods invoking continuation (cf. [3] for
elaboration); this, again, is quite delicate since the measure theoretic ideas,
which account for the success of a plausible local theory, do not appear to
admit a natural extension along an obvious homotopy path.

A final comment about the domain Q is in order. Unless otherwise
specified, Q2 1s a d-dimensional, bounded, uniformly Lipschitz domain. Only
in Corollary 4 is d restricted to the value d=1.

2. THE MODEL AND ITS REGULARIZATION

We assume that a function H is prescribed, C''in R' {0} and monotone
increasing, with a jump discontinuity of height 4 at zero and derivatives
satisfying

O<i<H(E)<u< =, E#£0, {3a)
[H"(S)] < K. #0, (3b)

where H'(0+ ) and H'(0— ), as well as H"(0+ ) and H"(0— ), are assumed
to exist. Normalization is chosen so that H(0—)=0, and the jump condi-
tion takes the form

HO0+)=A4>0.

The relation with multi-valued mappings will be drawn later. Under these
assumptions there is a C' smoothing, H,, satisfying, for 0 <& < «¢,,.

wez H(E) = A>0, ZeR, (4)

for some positive constants y and ¢,, and such that
O0< H(S)— H (S < pe, ¢¢[0.¢] {Sa)
) = J(O) < (1 +pid)e, ceR, (5b)
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where J, = H_ ', J=H ', the latter denoting the continuous left inverse of
H. Properties (4) and (5) are sufficient to establish the O(,/¢) convergence
result of Section 1 as we shall show shortly in Theorem 1. The details of the
construction are given in [2, pp. 46487, and amount to bridging H’(O )
and H'(¢), by a concave quadratic arc ¢, for which f{¢,()d{=4. to
obtain H and thence H,.

Before stating the approximation result, it is necessary to define, more
precisely, solutions of (1) and (2), and the underlying spaces. A con-
siderable economy of effort is achieved if the equivalent (abstract) integral
equation formulation, involving the Neumann inversion operator N, are
employed. This is also compatible with the convergence analysis. Consider
then the real Sobolev space H'(£2), with inner product taken on functions
with L* distribution derivatives:

- 1
(v, H‘)leJQVl Vn+@/ (v) j(w), (6a)

where

)= J‘SZ . (6b)

The norm defined by this inner product is equivalent to the standard one.
If we designate

F=[H'(2)]*

then N, is the Riesz map associated with (6); i.e., if /e F, and (-, - is the
duality pairing, then

ed=(Nolv),y, veH' Q). (7)

It is easily verified that N, is a Neumann solver; i.e., if fe L*(2), then
w= N, [ satisfies

1

~Aw“f—@/(/) (8a)
Z_0,  onee, (8b)
cyV

Jwy=j(f) (8¢)

in a weak sense. These facts are documented in [2, Sect. 1.17], together with
the usage of the equivalent norm on F, given by

H/H/-':</s No/>lz~ (9)
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Note that, if p denotes the largest eigenvalue of the positive definite
compact operator Ny|,:, then

< Uz S EL3Q). (10)

The equivalent formulation of (1), incorporating initial datum u, and
homogeneous Neumann boundary conditions, is

CNyH(u) 1 ) ]
O%(—H:——/(u NoH(u)|, o= Ny H(ug). (11)
it 12|
Here H has the technical meaning of a maximal monotone operator on
L*(£), induced by the multi-valued extension of (3) to R; in this case, the
function at 0 has the set-value

0)=1[0. 47. (12)

The functions H(u) and H(u,) are understood to be appropriate selections
of this operator. Regularity conditions are specified in Theorem 1 to follow.

Rather than express the equivalent form of (2) directly, we consider an
approximation of (2} in the form

(F}N Hll(llli) l -
——()61 +u(:—@1u }+ NyR,, U, |, _g=1uq. (13)

Here, R, is interpreted as a residual, with R, =0 corresponding directly to
the equivalent version of (2).

The choice of initial condition in (13) requires an hypothesis on the
measure of the set
={x:0<uylx)<ef, (14a)
specifically.

|K,| < Ce, 0<e<e,. (14b)

Hypothesis (14) is unnecessary for the convergence result of Theorem 1 if
the choice u,|,_,=J,.H(u,) is made, but the latter does not represent a

true smoothing of the problem, and is less compatible with the lineariza-
tion. The implication of (14) is that it permits the estimate

| H (ug) — H(ug)l ié pI1H (1) — H(“o)“ii(gl

<p[2J [1H (o) + [ H() "] + | (uﬂ)z]
O uply)=< e v
<p2(3° + A%) Ce+ pute? |12, (15)

where we have used (4), (5a), (10), and (12), as well as (14).
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The following theorem describes the approximation theory for (11) and
(13), and recalls the existence/uniqueness results. The proof is an adapta-
tion of results in [4], but allows for the more general situation considered
here. Specific constants are also derived in the convergence estimates as
presented in the following.

THEOREM 1.  Suppose uye H'(R2) and that (14) holds. There is a unique
solution pair [u, v, v = H(u), for (11) such that

ue L™((0, Ty, H(Q))n H'([0, T]; LY(Q)), (16a)
ve LX(DYn H'([0, T]: F). (16b)

For a function u,, in the class (16a) and satisfving (13), with residual R, the
estimates

HU;» — v Lo, e S K, \/”z + \’E IR, L20. Ty, £ et (17a)

flu, — ull 2 S K, V’/E + IR, LA(0, T): F) e’ (17b)

hold, where, in terms of the constant C, presented explicitly in (20a) to
follow,

K, =C2T"? exp(4pT/4), (17¢)

K,= 2 (KVT FlQ T <1 +5> sgf). (17d))
/

Proof. The existence and uniqueness results are contained in [2]. For
the approximation, set v, = H,(u,) and v = H(u). Subtraction of (11) from
{13), multiplication by v, —r, and integration over Q (functional operation
in the case of R,) yield

%% o, — vl 34 (J(v,) = JA0), .= )20
[
:I_-thj
+ (J(0)=J(v) v, =) 20 H (R, 0, — V)
< v = I pllv, — vl
+ 1:(0) = J) Ly 10, = vl 2oy + IR # o, — 2l £
< 2on(17.(v,) = J.(0) 22, + IV o0) = TN 22 + [ RIZ)

1 B 2 2
o e, — vHi+5 v, = vl 720, T35 I(v) = J(@)ll 220,

(.(v,) = J(v)) jlv,—0)
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for arbitrary positive constants # and f, where p is given by (10). The
inequalities

N |
IJ.(¢, )~ J;“')H;P(_Ql g;{ (J v )= d.(v) v, — )20,
lv, — l‘”ig'g)gi(./,,(l‘[,)*J{(lf‘), =)o)

which follow from J,<1/4 and H <7y/e, respectively, dictate the choices
n=/+/8p and ff=¢/2y. and we obtain, upon estimating the j-functional by
the duality norm,

1 d

¢ >, | ‘ ,
EE “L‘I, - l‘” ; +— (Jtz(lllz)' ‘/.‘,("1)" l‘) - l.)II(Qi

2

;-
5

<£+A’_V>.J.J(‘2 Jr@\«__.\\l i‘tR_
(G5 ) O =IOyt e =l IR

fouN\: A 4p . . N
<|Q|(1+; (Tﬂ'f: e L IRIG 8)

If (18} is integrated from 1=0 to t=1, and the Gronwall inequality is
applied to the resultant, we obtain

A7
Hl.l? - lTH 3 THOCT) Y + l (Ja:(ltz:) - ‘Iz,(l")’ U:: - l‘)l}(!!} dT

S[HCI T+§ R,,i_:m,_,,,,;)] el (19)
where
Ci=212 <1 +%>l <%+ v) + 2007+ A7) C+ ppiey 1R, (20a)
and
C‘z:?. (20b)

The proof is completed by use of the estimate
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i’}\jzz(l’z)—'](v)”iz([))gz ”Jlt(l;.",)\Jl( ) 12(D) +2 “J U)“i:(D]

\1< )zc T+ RN 500 } et
S TA
+210] r(1+<) 21
. /,,

Remark 1. If uqe L7 (£2), then the solution pair [u, v] of Theorem I
may be shown to lie in L*(D)x L”(D), thus restricting the classes of
(16a), (16b).

3. A MoDiFiIED NEWTON-KANTOROVICH FRAMEWORK

We shall develop such a framework for the regularized problem (2) in
terms of its weak formulation. For fixed ¢, F, is a map defined so that its
unique root is a solution of the initial/boundary-value problem for (2).
Specifically, the map

F.X->Z, (21a)
X=H'"[0, T]; L*(2))nL"((0, T); H'(Q)), (21b)

where the norm taken on X is the maximum of the norms of the two
spaces, 1.e.,

. . 12
ull y = max [(J u(-, 0)* + | 114,|2> cess sup [lu(-. I)H,,HQ)],
Q2 D ' T

ef0.T]

and where

Z=LY(0,T);G)x H'(Q),G=[H"(Q)n L"(2)]* (21c)
is defined component-wise by u+— F,(u)= ([F.(«)],. [F.(1)],), where

[F.(u)], (@)= L (‘h;t(“) ® +Vu -V(p), 0e H'(2)AL"(Q). (22a)

LF)=ul, oo —u,. (22b)

Note that ue X is weakly continuous into H'(€2) (cf. [2, p.240]) so that
{22b) is meaningful.
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It is straightforward to see that F, is Lipschitz continuously Frechét

:

differentiable on X, with F: X — Z, where, for y € X,

[F(u)y)], (@)ZL (H[(u)%WrW/ Vo )

N

peH Q)N L"(82). (23a)
LF )W) L=yl . (23b)

As mentioned in the Introduction, a purely functional calculus approach
making use of inequalities such as

I[Fiu)] "<M,. uek (24a)
[F/(u)=F ()| <M, u—rcl, wurelX, (24b)

1s not capable of providing a satisfactory Newton approximation theory,
since M, varies as ¢ '; M, is independent of & however, when a relaxed
norm structure is chosen, as we demonstrate in Lemma 3 of the next
section. Since the residual of the first Newton iterate “decreases” in norm
as the square of M, |F.(u")]| (see [3] for elaboration), it follows that any
such direct functional calculus theory is inconsistent with the result of
Theorem | in its conclusions. We shall now introduce the Newton
approximations, followed by the refined hypotheses sufficient for an
adequate theory.
The Newton approximations are defined in the usual way by
w'—u = [F W ] P F et ), m=l. (25)

i & i

However, in this paper we are presenting an algorithm in which only one
Newton approximation is computed. To describe the algorithm, let " be
a given function in X, and let u! solve the linear evolution equation, with
weak formulation prescribed by

i

~ ]
‘ (Hﬁ’(uf) (—f{[iqo—kVul ~V(p):0. pe HY Q)L (), 0<i<T,
Yo & /
(26a)
”l’z:o:“w (26b)
Then u, is the Newton approximation, as can be seen by comparing (22),

(23), and (25), the latter with m= 1, and setting  =u' — " in (23).
The hypotheses employed in this section are as follows. Set

D.={zeD:0<u’(z)<e], Dl=izeD:0<ul(z)<e}, (27a)

&
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and
D ={zeD:ul(z)ul(z)<0}. (27b)
Then it 1s assumed that

max(|D,), |D!].|D; )< Coe™?, 0<ce<ey. (27¢)

Remark 2. The hypotheses on D, and D! essentially require concave
power growth, of order 2/5, in planes normal to the free boundary; this is
quite stringent, and should be compared to the linear growth condition of
(14). The hypothesis on D, requires the Newton approximation u! to
adhere fairly closely to the sign properties of «°. The manner in which these
hypotheses are employed will be clear from the proof of the following
theorem.

THEOREM 2.  Suppose that u' e X, and that u! € X is computed according
to (26). If u and u! satisfv (27), then the following residual estimate holds:

“Fu(“,l; M2, G S (4; \/Cogl f4 2 “ull - “?H L3oy)
: ”“,I - u?”H't[’O. 71 L@ (28)
Here, the constants are rendered by (3b), (4), and (27c).

Proof. Inequality (28) follows from a residual representation and from
(23). Specifically, we begin with

Ful)y=F(u!)— F(u")~ F/(u")u! —u’)

= j“ LF ) +s(uy —u)) = F/ () (ug — uy) ds, (29)

&
¢

so that [F.(u!)], (¢) is represented, via (29) and (23a), by

-

| (CH! + st =) = H D) = (l — ) o s (30)
¢

VIR 74

ol

An appropriate estimation of this expression proceeds by domain decom-
position, ie., by splitting D. We consider the cases separately.

(i) Suppose ze D, . Then the most pessimistic estimate gives

Koz s) = |H/(u]() + su;(2) — u(2))) ~ H(u)(2))]

<¥+Klu,‘:(z)—u?(:)lﬁ B

640 62:3-2
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after addition and subtraction of H(¢) within absolute values; here, w is
described in (3b).

(ii) Suppose e D,\D, . Then the slightly sharper estimate
2.,
Kz s) <=+ ks [ul(z)—ul(z)] (32)
&

holds.

(iii) Suppose ze D'\D, . Then the same reasoning as in (ii) leads
to (32).

(iv) Suppose ze D\(D_, u D, D). Then

K(z.5)<Ks [ul(z)—ul(z)] (33)
holds, since the segment connecting #"(z) and u!(z) does not intersect

(0, &).

The case distinctions (i)-(iv) permit the proof to continue. If the
representation (30) is squared and integrated from 0 to 7, we obtain, after
a twofold application of the Schwarz inequality,

~ T a1 ~
| H:Fér(ll;l:)]l ((p)|2<2 l {’ K;(:’S)d:
Yo Yo (Ypowpon
+ i K2z, 8) d:} ds
Db Lphe
o : 5
X (u! =) Heli g,
NEE 12300) /
4'”3 " bl i hi
<4( = dz + w7 ' lu) —ul)” d:>
&5 Yp ol o '
G 1 [ el 2 34
.1E(U,V~u,‘)\‘ . HPLT ) (34)
' L2D)

The proof is now concluded upon application of (27¢) to (34). |

For technical reasons, the route now taken does not pass through
inequality (24a), which, in conjunction with Theorem 2, would translate a
duality estimate on F,(uC) into a corresponding estimate on F,(u)). Rather,
a stronger estimate on F,(u") is required, viz., an L* estimate, so that the
time derivative and the Laplacian perturbation can be adequately inverted.
This is presented in Lemma 3 of the next section.
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4. THE FUNDAMENTAL LEMMA AND COROLLARY

The purpose of this section is to derive the following lemma and its
consequence in terms of residual estimation.

LeMma 3. Let ue X (¢f (21b)). Then, for each [ g, w]e L (D)x H'(2)
the system

[F{;('H)l//]lzgﬁ l//‘zﬁ():“‘s (35)

is uniquely solvable for Wy e X, and, in terms of the standard norm on H'(Q),

— 2 ,
Il y < \/"'2 max (:» 1) explT/2) ILg wlll 12p) » 1ty (36)

It follows that, if F(u')e L*(D)x H'(R), then

N ] (el d 0 0y
|Fu, )”quo. oy S cle T+ IF, () L2200y % HY)) HF(,(MI;)“1‘3(1))><H1(£2;* (37a)

where

c=cyldy \ﬂ"/Cn + 2K¢y) (37b)

and C is given by (27c), with ¢, given by

s

= 2 ‘
Co=+/ 2 max (7 1) exp(7T/2). (37¢)

Proof. We use the method of horizontal lines, as employed in [2], to
discretize (35), with the left hand side defined by (23), except that
@ e H'(Q). Specifically, let an arbitrary uniform partition, 0 =7,<7, < ---
<ty =T, of [0, T] be specified, with 1, —t, =41 k=1,.., M.

We consider the sequence of problems

o (W= ) A1 I“’Al//k:g_k» Yo =w, (38)

where (38) is understood as holding in the distributional sense, i.e., in F,
and where

W, =Hiu(-, 1, =2i>0, (3%9a)

1 en
T, = 1) de 3%b
G=gpl et (39b)
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The existence of a unique solution , € /'(£2) of (38) follows from mini-
mizing the quadratic functional,

1 1
G()=5] V17457 | 11 -f-—i b [ =] &S (40)

over H'(2). By selecting the test function,
f = ‘//k - ‘//A I
for the distribution in (38) we find, upon summing on k=1, ..., m,

[l//k 1['2
At ‘

AI+ 2 “Vl/ij[ ~(£2)

k=1 ‘\ 120

m

SHVWM:(Q,WL Z &l 2oy Wk =i 12

ko=

gHVWHzLZ(Q) z Hgl\”Luz)Al'*' Z W’A*wk ]H;_Z(QW/”A[ (41
=1 A:l

so that (41) leads to

W=V o

A

m

5L

A\l

4

A[+ ‘VlwbmH[ () < [Vw U 2 T ‘g\‘ 2y (42)

12(62)

To obtain an estimate for sup, _,, < v [1¥,] 730, select the test function
f =1, in (38). Similar arguments lead to

()wuum+zwwmug

/"‘ , /‘ 12
<{7) Il +5 \mum+ Y Wl i, 4t (43)

/\7[

Estimates (42) and (43) and the discrete Gronwall inequality [2, pp.
52537, together with the definitions of norms, imply that the piecewise
linear function ¥ ,,, defined by the interpolation

Yol =1, (44)

satisfies

: 4 o,
H lIIAtH -YS max <7’ 2)(“”‘“;['(531 + 7 HgH;}([))) eXp( T). (45)
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Now it is shown in [2, Chap. 5] that appropriate cluster points of the
sequence (44) must be solutions of (35); the situation is even more elemen-
tary here since (35) is linear. Uniqueness is elementary, since the difference
¥ of any two solutions solves a smooth problem, and hence (Vi ), e L*(D).
This allows the relation, for D,=(0,1)x 2, 1< T,

r o lpd e
| JH D45 | V=0,

hence Y =0. Invertibility is now demonstrated, and (36) follows directly
from (45). Inequality (37) is a direct consequence of Theorem 2 and the
X-norm definition. ||

A direct corollary of Theorem 1 and Lemma 3 is the following.

COROLLARY 4. Suppose that the initial residual, F,(u’), satisfies

4
HF;:(US)HLZ(D»xHI(Qp<('181 > (46)

for ¢, independent of ¢, and that £ is a one-dimensional interval. Then, in the
notation of Theorem 1, with v, =v! and u,=u!,

lo, = ol 0. S Cr /& (47a)

I, — el 20y < Cy (47b)

where C, is independent of e.

Proof. ldentify R, of Theorem 1 with F,(u!). The assumption that 2 is
one-dimensional is used precisely to identify the dual space F, of H'(2),
with the dual space G, of H'(2)~ L™(£2), with equivalent norms. In this
case, inequality (37) of Lemma3 may be used in conjunction with
hypothesis (46), to estimate R, in (17a), (17b), thence leading to (47a),
(47b). 1

5. CLOSING REMARKS

The author thanks the referee for citing the related reference [6], and for
suggesting the inclusion of certain effects, not mentioned earlier in the
paper, which we shall comment upon now. Resonance and bifurcation were
the possible effects suggested; the first of these can be handled fairly easily,
whereas the second raises extremely interesting issues. The addition of a
time dependent term to the rhs of (1) does not change the error estimate
of Theorem 1, and the possible growth in time is already reflected in the
estimates (37), which appear implicitly in (47). Regarding bifurcation,
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though this model is logically separate, since it is not uniqueness which
breaks down as ¢ — 0, but rather differentiability, one can still discern clear
parallels. One can think of the map Fe u)=F (u) in terms of its
parametric dependence upon ¢; if one has already identified a solution
branch, then it is conceivable that one can track such a branch, even in the
face of operator singularities, so long as the approximations are sufficiently
delicate in terms of measure theoretic properties. This is the gist of
Theorem 2.

I3
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